16x^2+9x^2=140^2

Simple and best practice solution for 16x^2+9x^2=140^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16x^2+9x^2=140^2 equation:



16x^2+9x^2=140^2
We move all terms to the left:
16x^2+9x^2-(140^2)=0
We add all the numbers together, and all the variables
25x^2-19600=0
a = 25; b = 0; c = -19600;
Δ = b2-4ac
Δ = 02-4·25·(-19600)
Δ = 1960000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1960000}=1400$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1400}{2*25}=\frac{-1400}{50} =-28 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1400}{2*25}=\frac{1400}{50} =28 $

See similar equations:

| 3-4(2x-6)+2x=2(7-5x) | | (2(x+5))/3=8 | | 3x+31=3x+31 | | -8k-3+1=14 | | −3/4(x−20)=3/4x−5 | | 9(4x-6)-35x=6 | | 9x-5(2x-8)=2(2x-15) | | 3x-16=7x+7 | | −34(x−20)=34x−5 | | 9x-5(2x-8)=2(2x-15 | | m+1+2m=13 | | 21+4x+9=9x | | (4a+7)^2=16a^2+56a+49 | | 8/11=x/55 | | 4x-1=3x+(x-1) | | 14x-6-11x=20 | | 11-w/2=17 | | x+15+2x+15+3x-20=360 | | 2(4x-6=6x-4 | | -6w+4(w+8)=36 | | x/4-11=1 | | n+3+4n=-7 | | 4x+14-2x+17=6 | | 16+5w=96 | | -6x+9+8x=2 | | -3x+25=10 | | 1/2x^2-16=41 | | x/5-20=-22 | | 4x2+78x+144=0 | | x/6+18=26 | | (x+5)/2=0 | | u4– 2= 1 |

Equations solver categories